Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1116, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212448

RESUMO

Vector-borne diseases emergence, particularly malaria, present a significant public health challenge worldwide. Anophelines are predominant malaria vectors, with varied distribution, and influenced by environment and climate. This study, in Ghana, modelled environmental suitability for Anopheles stephensi, a potential vector that may threaten advances in malaria and vector control. Understanding this vector's distribution and dynamics ensures effective malaria and vector control programmes implementation. We explored the MaxEnt ecological modelling method to forecast An. stephensi's potential hotspots and niches. We analysed environmental and climatic variables to predict spatial distribution and ecological niches of An. stephensi with a spatial resolution of approximately 5 km2. Analysing geospatial and species occurrence data, we identified optimal environmental conditions and important factors for its presence. The model's most important variables guided hotspot prediction across several ecological zones aside from urban and peri-urban regions. Considering the vector's complex bionomics, these areas provide varying and adaptable conditions for the vector to colonise and establish. This is shown by the AUC = 0.943 prediction accuracy of the model, which is considered excellent. Based on our predictions, this vector species would thrive in the Greater Accra, Ashanti Central, Upper East, Northern, and North East regions. Forecasting its environmental suitability by ecological niche modelling supports proactive surveillance and focused malaria management strategies. Public health officials can act to reduce the risk of malaria transmission by identifying areas where mosquitoes may breed, which will ultimately improve health outcomes and disease control.


Assuntos
Anopheles , Malária , Animais , Humanos , Mosquitos Vetores , Gana , Malária/epidemiologia , Malária/prevenção & controle , Ecossistema
2.
PLoS One ; 18(10): e0293001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37847712

RESUMO

Nose masks are widely worn for protection against respiratory pathogens, including SARS-CoV-2. They have been reported as possible substrates for viral sampling and testing for COVID-19 but, evaluations have so far been purposive; involving individuals known to have the infection and using improved materials on the nose masks to trap the virus. We investigated the feasibility of using the regular 3-ply surgical masks and, voluntary coughing as a mode of particle expulsion for detecting SARS-CoV-2 infections in a cross-sectional study at Ghana's first COVID-19 testing reference laboratory, the Noguchi Memorial Institute for Medical Research, University of Ghana. Paired samples of naso-oropharyngeal swabs and nose masks already worn by 103 consenting adult participants (retro masks) were collected. Participants were also required to produce three strong coughs into a newly supplied sterile surgical nose mask. Pre-wetted swabs in Viral Transport Media (VTM) were used in swabbing the inner lining of each nose mask. The swabs used were then stored in VTM to maintain the integrity of the samples. PCR results of SARS-CoV-2 detection from the nose masks were compared to those from naso-oropharyngeal swabs ('gold-standard'). Out of the 103 participants tested with all three methods, 66 individuals sampled with naso-oropharyngeal swabs were detected as positive, and the retro and new masks matched 9 and 4, respectively. Only 3 individuals were positive across all three sampling methods accessed. The retro nose masks performed better in matching the gold-standard results than the new mask + coughing method, with 90% vs 80% sensitivity, positive predictive value of 13.6% vs 6%, and a weak but significant linear relationship (adj. R2 = 0.1; P = 0.0004). Importantly, we also show that the nose masks would work for sampling whether individuals are symptomatic or asymptomatic since gold-standard PCR cycling threshold (Ct) values for positive individuals did not differ between the two groups (P< 0.05). We recommend including features such as talking during participant engagement, use of a spontaneous cough inducer and increased coughing bouts > 3, to improve the performance of sterile nose masks for SARS-CoV-2 detection.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Estudos Transversais , Tosse/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...